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Measurement of the Newton Gravitational Constant G
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A novel method for measuring the gravitational constant G utilizes a modified Cavendish
arrangement in which the gravitational interaction between a large mass system and a small mass
system produces a torque on the latter. A rotary table carrying the large masses is servoed to con-
stant relative geometry with respect to the small mass system. The angular acceleration of the table
and the other appropriate parameters are measured. Recently [Phys. Rev. Letters 23, 655 (1969) ]
a slightly improved value of G was reported. Further improvements in the method and noise reduc-
tion are described and the ultimate potential accuracy of the method is discussed.
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1. Introduction

Gravitational interaction possesses two unique

_ Pproperties; its universality and its extreme weakness.

Both of these features contribute to the difficulty of
measuring the gravitational constant G which occurs
in Newton’s law of gravitation

F=G(m1m2/d2) (1)

where F is the force of attraction between any two
particles of matter in the universe having masses of
my and my, and d is the distance between the particles.
The relatively small size of masses which can be used
in practical laboratory experiments to determine the
gravitational constant, essentially requires the abso-
lute measurements of very minute forces or torques.
Furthermore, these forces or torques must be meas-
ured in the presence of disturbing forces and force
gradients which result from the asymmetry of the
mass distribution around the experiment, i.e., the
test masses interact not only with each other but
also with every other mass in the universe, for it has
not been possible to isolate or shield them from these
perturbing forces.

Critical reviews [1, 2] have been given of a number
of most ingenious experiments devised and carried
out by highly talented and skillful workers for meas-
uring G. However, it is evident that there still exists
an urgent need for determining with as much accu-
racy as possible both the absolute value of G and a
possible variation of G with time and other factors.
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A few years ago the authors [3] proposed a new
experimental method for determining G and some
preliminary results have been briefly reported [4, 5].
This paper will present additional preliminary results
as well as a more detailed description of the method
and the apparatus used. The principle of the method
is illustrated in figure 1.

Two large spherical masses (tungsten spheres) are
mounted on a rotary table which can be driven about
its axis of rotation by a specially designed electric
motor. Also mounted from the same rotary table is
a gas-tight chamber in which a small horizontal
cylinder is suspended by means of a quartz torsion
fiber fastened to the top of the cylinder and hanging
in the axis of the chamber. This small horizontal
cylinder is commonly called the small mass system
as contrasted to the large spheres which are referred
to as the large mass system.

The gravitational interaction between the two
mass systems tends to cause the small mass system
to deflect so as to bring its axial center line in align-
ment with the line connecting the centers of the two
large spheres. This changes the angle, . However, a
beam of light from a source mounted on the rotary
table is reflected from a mirror mounted on the small
mass system near the axis of the quartz fiber and
falls on a photodiode, also mounted on the rotary
table. Thus the light beam generates an angle .

As 0 begins to change due to the gravitational
interaction, so does 3. The photodiode senses very
minute changes in 38, and this “error” signal is used
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Ficure 1. Schematic drawing of experimental apparatus.

to drive the motor which rotates the table so as to
maintain 8 (and hence 0) constant. Thus with the
angular separation, ¢, remaining constant, the small
mass system experiences a constant torque, which in
turn causes a constant angular acceleration of the
rotary table. This acceleration can be determined
very accurately by measuring the period of the
rotating table, and will be shown to be a direct
measure of G.

This method possesses two novel features which
contribute to the potential for improved accuracy.
First, the interaction force of the two masses is
manifested in an acceleration (change of rotational
velocity) rather than a deflection. The effect of the
interaction is cumulative and can be integrated over
a long period of time, thus improving precision.
Second, the two mass systems rotate about an axis
many times during a measurement, and hence the
effects of gravitational fields or field gradients due
to extraneous masses are effectively cancelled except
for higher order effects.

2. Theoretical Analysis of the
Gravitational Torque
The analysis of the gravitational torque on the

small mass system in figure 1 exerted by the spheres
can be separated into two distinct parts. In the first
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part the gravitational potential at a point outside
the cylinder is calculated and in the second part the
potential gradient is used to determine the torque
and acceleration the small mass system will exper-
ience.

Referring to figure 2, the gravitational potential ¢
on the z axis for 2> C of a ring of mass m, radius r
and located at z=C cosw is

mG
(R24C*—2RC cosa)/2 "

Pring (P,) = (2)

This can be expanded to Legendre polynomials to
glVe

0

bring(P') =mG 2

=0

Cl

R 3)

The gravitational potential at any point in space is
obtained by multiplying each member of this series
by Pi(cosf).

P;(cosa).

) 1
¢ring(R, 8) =mG z;) ITC;E Pi(cosa) Pi(cosf). (4)

The potential for a cylinder is obtained by writing
this equation in differential form and integrating
over r and z.
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where p is the density of the cylinder.

Performing the integrationsin (5) using Rodrigues’
formula for P;(cose) and expanding it by means of
the binomial expansion yields,
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and a, R, and L are as shown in figure 2. The poten-
tial is nonvanishing only for even values of /.

This potential may now be used to determine the
magnitude of the force on a point mass, M, located
at the point P,

F=Mve. (10)
This is the same force that M exerts on the

cylindrical mass by Newton’s third law. The com-
ponent of force perpendicular to R is the only one
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FIGURE 2. Geometry for discussion of gravitational torque on a
cylinder.

which gives rise to a torque about 0. In spherical
coordinates, this component is given by
Fo= (M/R) (3¢/99)6. (11)

When two equal point masses are placed diamet-
rically opposite each other at (R, 6) and (R, 6+)

a pure torque about the x-axis results, given by
T=2M(38¢/09). (12)
Applying this equation to eq (6) yields

T zmMG o /2 k41 <2a>2(j—1)

0 o idig

R 1=0 k=0 j=1

L

x(%)l :—9 [Pi(cost) i+ (13)

The angular acceleration acting on the small mass
system is
o=T/I. (14a)

The stem holding the cylindrical mass is assumed
axially symmetric about axis y (see fig. 1) and hence
will not contribute to 7T but will contribute to I
which is the moment of inertia of the torsional
pendulum. With care, the contribution of the mirrors
to T can be minimized and represents a negligible
source of error. Their contribution to I is readily
calculable and was taken into account.

Hence the angular acceleration acting on the

torsional pendulum is

. 2mMG =, Y2 kL1 2a\2G-D
- ()

</ IR 5= ;
NG
X(ﬁ) a—o[Pz(cose)]. (14b)

Evaluating the [=2, 4, and 6 poles yield,

@ = (3mMG/IR®)[5—%(2a/L)*](L/2)%sin20  (15)
Gid §<£)2 1—3(2a/L)*+3(2a/L)*]
e\ 1_1(2a¢/L)%]

X (7cos?0—3) (16)

kL (L)“ [3—%Qa/L)*+3§(2a/L)*—&(2a/L)%]
LRLAY

2R 3—1(2a/L)*]
X[1386 cos*d—1260 cos?9+210]. (17)
Of course, w is
W=yt oyt wst - (18)

where the higher terms are negligible for the current
measurement accuracy of .

Equation (18) is correct if the torsional constant,
k, of the pendulum is zero. If k%0 then the measured
angular acceleration, o, is

a=wtwy/

(19)

where v/, is the angular acceleration without (w/o)
the spheres on the rotary table. The plus sign of
course applying to @ and &/ being in the same
direction.

An expression for G is easily obtained. From eq

(19).,

w =a:|:cbw/0.

(20)
Using eq (15) through (17), eq (18) may be written

as,
wo=GA(1+B+C+---) (21)

where 4, B, and C follow clearly from (15) through
@i

Since I is actually the moment of inertia of the
small mass system (the moment of inertia of the
fiber is negligible) which consists of the horizontal
cylinder and the vertical stem,

I=1,41..
This may be written as
I=m(L/2)*[3+%(2a/L)*+ (2/L)*(L;/m)]. (23)
Hence an expression for G, is

G = (axtww,)/A(1+B+C--+)

(22)

(24)

where

3M 1—1(2a/L)*] sin26

R® [§+3(2a/L)*+ (2/L)*(I,/m) ]’
_5(L\[3—3(2a/L)*+3(2a/L)

B=5(ar) = it

A=

(25)

! (7 cos?0—3)
2R i

(26)

487



and
el <£>4 [3—%(2a/L)*+%(2a/L)*—(2a/L)"]
48 \2R 1—1(2a/L)%]
X [1386 cos*9— 1260 cos?+2107]. (27)

The experimental problem is to determine o, Gy /o,
R, M, a, L, I,, m, and § as accurately as possible.
Then G can be calculated from eq (24). Additional
terms can be calculated if necessary, but they do not
contribute to the present level of precision.

3. Description of Apparatus

Figure 3 is a photograph of the experimental
apparatus which is mounted inside a clean tempera-
ture controlled (0.01 °C) room. Two concrete block
columns mounted on a concrete base (isolated from
the building) support the experimental apparatus.
The rotary table (1) and precision air bearing (2)
support a gas tight chamber (3) which encloses a
torsional pendulum immersed in helium gas to reduce
any temperature gradients. The tungsten spheres
(4) are placed on their stands so that their radial
position relative to the center of the chamber is
accurately known. The tracking optical lever (5) is
of a type due to Jones and Richards [6], and monitor
any angular change of the torsion pendulum inside
the chamber. A servo mechanism is designed to
maintain a zero output from the sensing photodiodes
of the optical lever. To do this it rotates the rotary

F1cure 3. Photograph of apparatus.

table (1) by means of an ac torque motor. The
rotor of this torque motor is inside the circular stator
(6) and is attached to the table through the precision
bearing. To the bottom of the rotor is attached the
mercury slip ring assembly (7) which provides elec-
trical connections to the tracking optical lever. The
water cooled stator (6) is mounted to an aluminum
plate and the assembly is held tightly against the
Rahn Granite Surface Plate (8) by four clamps (9).
This allows for easy and reliable positioning of the
stator relative to the rotor. The timing optical lever
(10) senses the passage of the small mirror (11)
mounted to the rotary table. This allows the period
of the table to be calculated. From these periods the
angular accelerations « and @/, can be calculated.
The measurement of the other variables in eq (24)
leads to the determination of G.

4. Determination of G

In order to obtain a value for G, the nine param-
eters appearing in eq (24) must be determined. Five
of these (a, L, I,, M, and m) can be considered as
constants of the apparatus and can be measured
directly, independent of the experimental observa-
tions. The other four (@, @y/, R, and ) must be
determined as a part of the observations.

The high-density tungsten spheres, which make
up the large mass system (figs. 1 and 3) were specially
made at the Y-12 plant of the Union Carbide Cor-
poration Nuclear Division, Oak Ridge, Tenn. [7].
Each of the tungsten spheres had a mass of approx-
imately 10 Kg and rested on a damped three point
mount which in turn was supported by a common
large quartz plate in order to minimize the effect of
temperature fluctuations. The distance between the
centers (fig. 1) is approximately 12 e¢m and ‘was
measured by standard methods using Johansson
gauge blocks as references.

The small mass system consists of a carefully
machined high purity oxygen free (diamagnetic)
copper cylinder approximately 4 cm long (L) and
0.2 cm in diameter (a) fastened to a small accurately
machined aluminum alloy rod which in turn was
supported by a 25 u quartz fiber 33 ¢cm long hung
from the top of the metal chamber containing helium
as shown in figure 1. The mass of the copper cylinder
m is about 4 g. The quartz fiber and aluminum alloy
stem were carefully positioned in the vertical axis of
rotation and the axis of the copper cylinder was in
the horizontal plane containing the line between the
center of the two tungsten spheres. The aluminum
stem carried two small mirrors as shown in figure 1.
The angle 6" between the axis of the copper cylinder
and perpendicular to the tracking mirror on the
aluminum stem is 44° 43'40.5".

The dimensions chosen for the small mass system
were a compromise between feasible size and keeping
the distance between the two spheres 2R as small as
possible for maximum angular acceleration «. The
precise physical dimensions of the mass systems are
shown in table 1.



TasLE 1.

Mass systems

Large masses—high density tungsten spheres

Diameter
Distance between center of mass and geometrical center
Sphericity

Small mass system—copper cylinder
Length L
Diameter a

Moment of inertia of aluminum alloy system

Angle between the axis of copper cylinder and perpendicular to

tracking mirror

Sphere #1 Sphere #2

____________ kg 10.4899804-0.00007 10.490250 4-0.00007
___________ cm 10.165072 10.165108
___________ cm 4.610X10™* 7.569 X107
___________ cm 12 5600 12 1058
___________ cm 3.9649 +0.0004

___________ cm 0.19824+0.0004

_____________ g 4.0512-£0.0001

_________ g cm? 0.0408 +0.0001

_______________ 44°43’40.5’

The angle 6 between the longitudinal axis of the
cylindrical rod of the small mass system and an
imaginary line joining the centers of mass of the
spheres not only must be determined but must be
held constant during the experiment. As can be seen
from eq (15), it is desirable to make this angle
approximately 45° in order to maximize the angular
acceleration  of the table. In effect, this will mini-
mize the experimental error since when 6 is zero or
90° there is no torque exerted on the small mass
system. Consequently the torque must pass through
a maximum when 6 is varied from zero to 90°. It
turns out that there is a relatively flat maximum
near § =45°. In order to maintain 9 constant, 3 is held
constant by the servo system shown in the block
diagram in figure (4). The details of this servo sys-
tem are explained in the literature [8]. Experimental
tests show that the tracking error of this system is

approximately +0.2 s of arc. The small mass system
is suspended with the perpendicular to the tracking
mirror also perpendicular to the line joining the
centers of mass of the spheres. Consequently 9 is very
nearly equal to 90°—¢’ with small corrections deter-
mined from the position of the tracking optical lever
[5]. The tracking optical lever is positioned so that
the tracking angle corresponds as closely as possible
to the neutral position of the small mass systems with
the tungsten spheres removed. This minimizes the
background angular acceleration of the table wy/o
due to twist in the quartz fiber.

The measurement of the angular acceleration o
and @y in eq (24) involves the determination of the
period of the rotary table. Figure (5) is a block
diagram of the timing system. When the table turns
the attached mirror reflects the light back to the
fixed optical lever producing a sharp voltage spike.
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Freure 4. Circuit block diagram for tracking loop.
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Ficure 5. Block diagram of timing system for measuring the period of each revolution.

This activates the trigger when the output voltage
exceeds a pre-set level. The timing trigger starts the
counter J)Hewlett-Packard Model 5245L) which
measures the time interval from the start of the pulse
until it receives a stop pulse from the counter’s
reference precision oscillator. The duration of this
interval is relayed to a printer which records the
interval in microseconds. Each 10 second interval
thereafter from the reference oscillator is recorded.
When the table makes a complete revolution another
start pulse is produced by the same fixed optical
lever which marks the beginning of a second revolu-
tion. This start pulse together with the next stop
pulse from the reference oscillator will cause the
electronic counter to print out the time interval
between the two pulses in microseconds. The rota-
tional period of the table is then obtained in micro-
seconds. The reference oscillator in the counter has
been checked against a 10 MHz broadcast signal
from WWYV and found to be 1 MHz to within 3 parts
in 10°. The error in this trigger system even at the
maximum speed of rotation of the table is less than
1 ps. This introduces an error of less than 10~7 radians
or a precision of at least 1 part in 107 for the period of
rotation of the table. After the successive periods of
rotation of the table are known it is possible to com-
pute the constant acceleration « of the rotary table.

The procedure in carrying out this experiment con-
sists in first allowing the apparatus in the room to
come to temperature equilibrium with the servo
system operating and the rotary table stationary.
The table is leveled and the run out checked by an
electronic indicator gauge which records a difference
in position of 7.6 X10~% cm. The table wobble is less
than 0.0005 c¢m at a radius of 12 ¢m. The electronic
indicator is next used to check the vertical alignment
of the cylindrical chamber surrounding the small
mass system. It has a maximum run out of less than
0.0006 cm. The quartz fiber is adjusted to coincide
with the axis of rotation to 0.0005 cm by observing
it with a microscope through ports (with the glass
removed). The windows are replaced and the cham-
ber is filled with helium gas. As previously mentioned
the tracking optical lever is next set so that the effec-
tive twist in the fiber approaches as close to zero as
possible. The tungsten spheres which already are at
room temperature are placed in their mountings and
their heights adjusted until their centers of mass are
in the same horizontal plane (=0.002 cm) as the axis
of the cylindrical rod of the small mass system. An
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analysis shows that the error introduced by this mis-
alignment is negligible in the present experiment. The
centers of mass of the two tungsten spheres are placed
in a line through and perpendicular to the axis of
rotation by use of a combination of an interferometer
plate mounted on top of the chamber, modified
optical lever and electronic indicator. The electronic
indicator is then used to make the radial distances of
the two spheres from the axis of rotation equal to
within £10~° ecm. The absolute value of R is deter-
mined by comparison with Johansson gauges by
standard optical methods used in connection with
the electronic indicator.

The tracking is then started and the acceleration
of the table determined. When operating properly
this angular acceleration of the table is constant. In
fact, the constancy of this acceleration is a good
measure of the noise in the system. After the accelera-
tion (between 4 and 5X10~° rad/s?) takes place for
several hours and the rotational speed of the table
reaches between one and two revolutions per minute,
the large tungsten spheres are carefully removed from
the table and the tracking continued for several
hours. The acceleration of the table with the spheres
removed &/, gives a measure of the gravitational
interaction of the small mass system with the mass
of the table and other fixed masses turning with it as
well as of fiber twist and other perturbing factors.
Consequently, the acceleration & due to the tungsten
spheres or large mass system alone is determined by
eq (20). Experiments have been carried out with the
table decelerating as well as accelerating. It is impor-
tant to note that in all of the experiments the table
rotates a number of complete revolutions; this ren-
ders negligible the effect of the ever present fixed
mass asymmetry surrounding the experiment.

5. Results

Preliminary values obtained for G some months
ago [4] revealed several sources of uncertainties
which were limiting the precision of the measure-
ments. Consequently, major emphasis has been
placed on improving the various parts of the experi-
ment and developing better procedures for perform-
ing delicate measurement tasks.

In the earlier experiments, the major error occurred
in determining » and resulted from a combination of
variations in spindle friction, some instabilities in the
electronic circuits, and temperature gradients pro-
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Ficure 6. Measurements of angular acceleration o.

duced by the motor and bearing. Fortunately the
trouble with the bearing has been solved by substi-
tuting a gas bearing for the precision ball bearing
spindle used previously. Careful thermal isolation of
the motor has reduced temperature variations and
the electronic circuits have been much improved and
stabilized. Very recent measurements of acceleration
are shown in figure 6 and compared with earlier
results. The acceleration now remains constant to
the order of one part in 10 There is good reason to
believe that this can be improved by at least a factor
of ten in the near future. When the measurement of
all the required physical dimensions of the system
are completed a significant improvement in the accu-
racy of G should result. Before the recent improve-
ments, our best value obtained with the present
technique was G= (6.6740.012) X10~ Nm?/kg?
where 0.012 represents three standard deviations.
This agrees very well with the value due to Heyl [9]
of G=(6.670-£0.015) X 10~ Nm?/kg?

One limiting factor to the precision with which G
can be determined with the present equipment is the
precision with which the center of mass of the two
tungsten spheres can be determined. These uncer-
tainties produce an uncertainty in R which will pro-
duce an uncertainty in G of about 5 parts in 10
We are encouraged to believe that the method can
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be made to measure G with much greater accuracy
than is possible with the present tungsten spheres.

Experiments [10] have shown that certain metals
with intermediate to high specific gravities may have
variations in density of less than one part in 107 per
cm. These metals cannot be made into precise spheres
because they will distort on the necessary supports
under their own weight. However, it can be shown
that they can be used in the form of rectangular
blocks where the distortion will be greatly reduced.
This of course complicates the theory but the problem
is solvable by a computer.

It is difficult to estimate with reliability the ulti-
mate precision with which G can be measured by
this method. In agreement with the original concep-
tion of the experiment [3], it is still believed that
magnetic suspension of the small mass system, rather
than by quartz fiber, will provide the better ultimate
accuracy. The primary reason is that almost surely
the torsion constant of the small mass- suspension
system can be very significantly reduced and thus
the required tracking tightness can be reduced. Also,
it can be expected that the temperature sensitivity
of the torsion constant can be reduced. Our experi-
ence has shown that many important improvements
can be made in the present apparatus. With a com-
pletely new design of the rotary table and chamber
with special attention to temperature and vibration
isolation, certain changes in the servo motor drive
system, improved metrology, substitution of the
blocks of metal for the sintered tungsten spheres as
well as of an accurately ground quartz cylinder in the
small mass system, etc., it is not beyond conception
that G can be measured to one part in 10°%." Also there
is better reason to believe that variations in G of one
partin 10° ultimately may be detected by this method.
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DISCUSSION

E. R. CoHEN: I have some questions about how
you really get one part in a million out of all of this.
With the present system, I looked at your paper and
tried to make some estimates. Going to the assem-
bled masses I think would certainly help identify
the center of mass properly. But in terms of the
small mass, the attracted cylinder, don’t you also
have to worry about the density distribution in that?
And I'm also worried about how many terms in your
harmonic expansion are really needed to get a part
in a million. I estimated, I think, at one time keeping
up to the eighth order terms.

H. M. PARKER: I have done up to tenth order.
I don’t think that’s the problem. After all, that’s
just work. You can do that.

E. R. ConEN: Yes. But there is the question of
the interaction, of how accurately you know one of
the lower order terms compared to the higher order
term that you’re keeping.

H. M. PArkER: Let me point out to you, though,
that there is a great tendency for the mass in the
small system to cancel out in the moment of inertia
term and in the interaction term. If you consider
your small mass system as a simple point dumbbell,
then the mass doesn’t appear at all. It’s just the
physical dimensions of it that count. I personally
think that the thing that really counts here is the
length of that cylinder and then—

E. R. CoHEN: It’s not the mass as much as the
distribution, the density distribution.

H. M. PARKER: Well, I think that one can show
that even in that case that same tendency is there to
some extent at least. I haven’t shown that yet, but
I think it’s there. But I think that one can build
systems like this, small things like this, with densi-
ties that are uniform to a part in 10, don’t you?
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E. R. ComEN: I'm asking you. (Laughter).

H. M. PARKER: I'm not a metallurgist.

E. R. CoHEN: I agree it’s not the moment of
inertia and it’s not the mass. It’s the radius of
gyration and the higher moments of this quantity.

H. M. PARkER: Yes. I think one of the nastiest
things here, if I can just correct for the moment of
inertia and the interaction too eventually . . .

E. R. CoHEN: Yes.

H. M. PARkER: It would be real nice if that were
completely axially symmetric to eliminate one of
them.

D. Havrorp: Is the distance of the large masses
self-calibratable by translating each one in the
X, Y, Z directions and letting it decide its own
distance?

H. M. PARkER. I don’t know. It could very well
be. I'll tell you what we worried about. Incidentally,
it’s not R that really counts. It’s 2R. It’s the distance
between those two masses if you assume they are
approximately symmetrically placed.

D. Harrorp: Yes. Each one would have to be
done individually.

H. M. PARkER: Yes. And the way that we hope
eventually to get at something about this non-uni-
formity of these tungsten spheres is to change their
orientation. So far we have been careful to put them
on the table the same way every time. But eventually
we’ll start turning them to different orientations
and see if we get effectively different results. That
will give us something about the inhomogeneity.
There is likely to be fairly—I'm afraid too—large
inhomogeneities in these sintered tungsten spheres.
They were hard to mal ..
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